Given the school result data,analyse the performance of 5 students on different parameter, e.g. subject wise.
Program Logic:
- Import matplotlib.pyplot in program using import statement
- Import pandas module using import statement
- Import numpy module using import statement
- Create Dictionary object using different set of key value pair(i.e. subject and marks scored )
- Create Dataframe object using DataFrame method and pass index say student name as an argument to it
- Print DataFrame object using print function
- Plot bar chart using plot method and pass kind = bar as an argument to it
- Show bar chart using show method
Below is implementation code /source code
Here is program code to analyse the performance of student data on different parameter, e.g. subject wise or class wise
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
marks = { "English" :[67,89,90,55],
"Maths":[55,67,45,56],
"IP":[66,78,89,90],
"Chemistry" :[45,56,67,65],
"Biology":[54,65,76,87]}
df = pd.DataFrame(marks,index=['Sumedh','Athang','Sushil','Sujata'])
print("******************Marksheet****************")
print(df)
df.plot(kind='bar')
plt.xlabel(" ")
plt.ylabel(" ")
plt.show()
Below is output:
******************Marksheet**************** English Maths IP Chemistry Biology Sumedh 67 55 66 45 54 Athang 89 67 78 56 65 Sushil 90 45 89 67 76 Sujata 55 56 90 65 87 Below is bar chart showing performance of students subject-wise


Below is snapshot of executable code:


You can also check:
- Write a Pandas program to count the number of rows and columns of a Data Frame.
- Write a Pandas program to select the rows the score is between 15 and 20 (inclusive);
- Write a Pandas program to select the rows where the score is missing, i.e. is NaN.
- Write a Pandas program to find and replace the missing values in a given Data Frame which do not have any valuable information
<